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1. Introduction
This paper shows that the specification and verification techniques for abstract data types that have

been successful for sequential programs can be extended in a natural way to provide the same

benefits for concurrent programs. Our two main contributions are:

" New techniques for using (sequential) axiomatic specifications to reason about
concurrent objects; and

" A novel correctness condition, which we call linearizability.

Informally, a concurrent system consists of a collection of sequential processes that communicate

through shared typed objects. This model is appropriate for multiprocessor systems in which

processors commuricate through reliable, high-bandwidth shared memory. Whereas "memory"

suggests registers with read and write operations, we use the term concurrent object to suggest a

richer semantics. Each object has a type, which defines a set of possible values and a set of primitive

operations that provide the only means to create and manipulate that object. We can give an

axiomatic specification for a typed object to define the meaning of its operations when they are

invoked one at a time by a single process. In a concurrent system, however, an object's operations

can be invoked by concurrent processes, and it is necessary to give a meaning to possible

interleavings of operation invocations.

Our approach to specifying and verifying concurrent objects is based on the notion of linearizabiity.

A concurrent computation is linearizable if it is "equivalent," in a sense formally defined in Section 3,

to a legal sequential computation. We interpret a data type's (sequential) axiomatic specification as

permitting only linearizable interleavings. Instead of leaving data uninterpreted, linearizability exploits

the semantics of abstract data types; it permits a high degree of concurrency, yet it permits

programmers to specify and reason about concurrent objects using known techniques from the

sequential domain. Unlike alternative correctness conditions such as sequential consistency [171 or

serializability [26], linearizability is a local property: a system is linearizable if each individual object is

linearizable. Locality enhances modularity and concurrency, since objects can be implemented and

verified independently, and run-time scheduling can be completely decentralized. Linearizability is a

simple and intuitively appealing correctness condition that generalizes and unifies a number of

correctness conditions both implicit and explicit in the literature.

Using axiomatic specifications and our notion of linearizability, we show that we can perform two

kinds of reasoning:

* We reason about concurrent computations by transforming assertions about concurrent
computations into simpler assertions about sequential computations. Familiar axiomatic
techniques help prove these transformed assertions.

I]
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* Implementations of concurrent objects are necessarily more complex then their
sequential counterparts. We reason about the correctness of linearizable
implementations using new techniques that generalize the notions of representation
invariant and abstraction function to the concurrent domain.

Section 2 presents our model of a concurrent system and specification technique; Section 3 defines

and discusses linearizability, including its locality property; Section 4 illustrates reasoning about

concurrent registers and queues; Section 5 illustrates reasoning about an implementation of a

concurrent queue; Sections 6 and 7 contain discussions on related work and the significance of

linearizability.

2. System Model and Specification Technique

2.1. Histories

An execution of a concurrent system is modeled by a history, which is a finite sequence of operation

invocation and response events. An operation invocation is written as x op(args ° ) A, where x is an

object name, op is an operation name, args ° denotes a sequence of argument values, and A is a

process name. The response to an operation invocation is written as x term(res ° ) A, where term is a

termination condition, and res ° is a sequence of results. We use "Ok" for normal termination. A

response matches an invocation if their object names agree and their process names agree. An

invocation is pending in a history if no matching response follows the invocation. If H is a history,

complete(H) is the longest subhistory of H consisting only of invocations and matching responses.

A history H is sequential if:

1. The first event of H is an invocation.

2. Each invocation, except possibly the last, is immediately followed by a matching
response.

3. Each response, except possibly the last, is immediately followed by an invocation.

A process subhistory, HIP (H at P), of a history H is the subsequence of events in H whose process

names are P. An object subhistory Hlx is similarly defined for an object x. Two histories H and H' are

equivalent if for every process P, HIP = H'IP. A history H is well-formed if each process subhistory

HIP of H is sequential. All histories considered in this paper are assumed to be well-formed. Notice

that whereas process subhistories of a well-formed history are necessarily sequential, object

subhistories are not.

An operation, e, in a history is a pair consisting of an invocation, inv(e), and the next matching

response, res(e). An operation eo lies within another operation e1 in H if inv(el) precedes inv(eo) and

res(eo) precedes res(e1) in H.

... ....-- i l i mmm~m i i l l l i i IN iN P ~ a ' - "I
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For example, let H, be the following history:
q Enq(x) A (History H1)
q Enq(y) B
q Ok() B
q Ok() A
q Deq0 B
q Ok(x) B
q DeqO A
q Ok(y) A
q Enq(z) A

H, is a well-formed history for a FIFO queue q providing Enq and Deq operations. The first event is an

invocation of Enq with argument x by process A, and the fourth event is the matching response with

termination condition Ok and no results. The "q Enq(y) B/q Oko B" operation lies within the
"q Enq(x) A/q Oko A" operation. The subhistory, complete(HI1 ), is H, with the last (pending)

invocation of Enq removed. Reordering the first two events yields one of many histories equivalent to

H1.

2.2. Specifications
A sequential history for an object can be summarized by the object's value at the end of the history.
We use axiomatic specifications to reason about object values. A specification is a set of axioms of

the form:

(P)
op(args*)/term(res*)

{Q)

where P is a pre-condition on the object's value and the argument values that must be met before an

invocation, and 0 is a post-condition on the object's value and the result values that is guaranteed to
hold upon return for the given termination condition. Identifiers in args ° and res ° denote values of

arguments and results. A sequential history H is legal if for all object subhistories, Hix, of H, each

operation in Hix satisfies its axiomatic specification.

The axioms presented in this paper are essentially Larch interface specifications [10, 11 ] for

operations of abstract data types. For example, axioms for the Enq and Deq operations for FIFO

queues are shown in Figure 2-1. The queue's value before the operation is denoted by q and the
value after the operation by q'. The post-condition for Ena states that upon termination, the new

queue value is the old queue value with e inserted. Notice that the specification for Deq is partial:

Deq is undefined for the empty queue.

The assertion language or the pre- and ,ons is based on the Larch Shared Specification

Language. It is akin to algebraic specification languages and is used to describe the set of values of a

typed object. The set of operators and their signatures following introduces defines a vocabulary of
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Axiom E:
[true)

Enq(e)/Oko
{q' = ins(q, e))

Axiom D:

{-' isEmp(q)}
Deqo/Ok(e)

{q' = rest(q) A e = first(q)}

Figure 2-1: Axioms for Queue Operations

QVals: trait
introduces

emp: -- Q
ins: Q, E -+ Q
first: Q - E
rest: Q - 0
isEmp: 0 -. Bool

constrains 0 so that
0 generated by [ emp, ins]
for all q: 0, e: E
first(ins(emp), e)) = e
first(ins(q, e)) = if isEmp(q) then e else first(q)
rest(ins(q, e)) = if isEmp(q) then emp else ins(rest(q), e)
isEmp(emp) = true
isEmp(ins(q, e)) = false

Figure 2-2: Trait for Queue Values

terms to denote values. For eyample. emp and ins(emp, 5) denote two different queue values. The

set of eauations following the constrains clause defines a meaning for the terms, more precisely, an

equivalence relation on the terms, and hence on the values they denote. For example, from QVals, we

could prove that rest(ins(ins(emp, 3), 5) = ins(emp, 5). The generated by clause of QVals asserts

that emp and ins are sufficient operators to generate all values of queues. Formally, it introduces an

inductive rule of inference that allows one to prove properties of all terms of sort 0. We use the

vocabulary of traits to write the assertions in the pre- and post-conditions of a type's operations- we

use the meaning of equality to reason about its values. Hence, the meaning of "ins" and "="in

Axiom E's post-condition is given by the trait QVals.

3. Linearizability
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3.1. Definition

Axiomatic specifications have (as yet) no meaning for histories that are not sequential. This section

introduces the notion of linearizabiity, the basic correctness condition that allows us to apply

algebraic specifications and axiomatic reasoning to concurrent objects.

A history H induces an irreflexive partial order -<H on operations:

80 -<H el~ if res(e0 ) precedes inv(e,) in H.
(Where appropriate, the subscript is omitted.) Informally, -<H captures the "real-time" precedence

ordering of operations in H. Operations unrelated by -.<H are said to be concurrent. If H is sequential,

"<H is a total order.

A history H is linearizable if can be extended (by appending zero or more events) to some history H'

such that:

Li: complete(H') is equivalent to some legal sequential history S, and

L2: -<H. - "S"

Li states that processes act as if they were interleaved at the granularity of complete operations. L2

states that this apparent sequential interleaving respects the real-time precedence ordering of

operations. We call S a linearization of H.

The history H1 shown in Section 2 is linearizable, because H1' = H1  q Ok() A is equivalent to the

following sequential history:
q Enq(x) A (History H1')
q Oko A
a Enq(y) B
q Ok() B
q Deq0 B
q Ok(x) B
q Deq0 A
q Ok(y) A
q Enq(z) A
q Oko A

The following history, H2, is not linearizable:

q Enq(x) A (History H2)
q Ok() A
q Enq(y) B
q Oko B
q Deq0 A
q Of (y) A

because the Enq of x precedes the Enq of y, but y is dequeued before x.

Linearizability does not rule out histories such as the following history, H3, in which an operation

"takes effect" before its return event occurs:

.,= =,= =r~m=ran nan w~an ulllm n mnmn~ma=mnu nn~nnlmm l =mmaum~aml P,



6

a Enq(x) A (History H3)
q Deq0 B
q Ok(x) B

H3 can be extended to H3 ' = H3 • q Oko A, which can be shown equivalent to the sequential history in

which the enqueue operation occurs before the dequeue.

Lamport's notion of sequential consistency [17] requires that a history be equivalent to a sequential

history. Sequential consistency is weaker than linearizability, because it does not require the

precedence ordering -< to be preserved. For example, H2 is sequentially consistent, but not

linearizable. Serializability [261 requires that a history be equivalent to a sequential history in which

each process (usually called a transaction) runs to completion without interleaving with other

processes. 1 Lamport [19] has proposed that the standard definition of serializability be strengthened

to preserve the order of non.overlapping transactions. Both notions of serializability are

incomparable to linearizability. For example, H1 is linearizable, but not serializable (in either sense),

and H2 is serializable, but not linearizable.

3.2. Locality

Linearizability is a local property.

Theorem 1: H is linearizable if and only if H~x is linearizable at each object x.
Proof: The "only if" part is obvious.

From the assumption that each object's history is linearizable, there exists for each object
x an induced total order <x on its own operations, and by the well-formedness criteria for
histories, each process P induces a total order <p on its operations. We claim that the
transitive closure of the union of all <X and <p is a partial order, -<, and hence can be

extended to a total order, . Notice that each <x and <p is compatible with -<.

Suppose -< is not a partial order. Then we can construct a cycle el 0 ... 0 en, where el =

en, such that el -< e2 -< ... -< en, where el. 1 and e, 1 < i < n, are related by some <x or <p.
The contradiction is immediate if no pair is related by a <P. because then all relations are
induced by the same <x, which is assumed to be a total order. Otherwise, the cycle of
operations can be relabeled so that e1 <P e , for some process P. Because processes are
sequential, the response of e1 precedes the invocation of e2, and because all relations are
consistent with -<, the invocation of e2 precedes the response of en' which is identical to
the response of e. Hence the response of el precedes itself, a contradiction. I

Henceforth, we consider only histories involving single objects, omitting object names from events.

Locality is important because it allows concurrent systems to be designed and constructed in a

lIn databases, serializability is often provided in conjunction with failure atom/dty, ensuring that a transaction interrupted by

a failure will have no effect.

II l' I i
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modular fashion; linearizable objects can be implemented, verified, and executed independently. A

concurrent system based on a non-local correctness property must either rely on a centralized

scheduler for all objects, or else additional constraints must be placed on objects to ensure that they

follow compatible scheduling protocols.

Locality should not be taken for granted; the literature includes proposals for both alternative

correctness properties that are not local. For example, Lamport's notion of sequential consistency is

not a local property. Consider the following sequential history H, in which processes A and B operate

on queue objects p and q. For brevity, matching responses are shown on the same lines as

invocations.

p Enq(x)/Ok0 A
q Enq(y)/Ok0 B
q Enq(x)/Ok0 A
p Enq(y)/Oko B
p DeqO/Ok(y) A
q Deqo/Ok(x) B

HIp and HJq are not legal sequential histories, but they are sequentially consistent, although H itself is

not.

Also, serializability and Lamport's strengthened notion of serializability are both non-local. In the

example above, HIp and HJq are each serializable in either sense, but H itself is not.

3.3. Linearized Values

Non-determinism is inherent in the notion of linearizability: (1) For each H, there may be more than

one extension H' satisfying the two conditions, Li and L2, and (2) for each extension H', there may be

more than one linearization S. We call the value of an object at the end of a linearization a linearized

value. Since a given history may have more than one linearization, an object may have more than one

linearized value at the end of a history. We let Lin(H) denote the set of linearized values of H.

Informally, a history's linearized values represent the object's possible values from the point of view of

an external observer. Figure 3-1 shows a queue history with its set of linearized value. after each

event. (We use [] for emp and [x,y] for ins(ins(emp, x),y), itc.) Initially, only the empty queue is

associated with the empty history. After the invocation of Enq(x), there are two linearizcd values,

since the enqueue may or may not have taken effect. After the invocation of Enq(y), there are five

linearized values: either Enq -ay or may not have occurred, and if both have occurred, either

ordering is possible. After the response to Enq(y), y is known to have been enqueued, and after the

response to Enq(x), both x and y must have been enqueued, although their order remains ambiguous

until x is dequeued.
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History Linearized values
~{[]}

Enq(x) A {[],[x]}
Enq(y) B {[],[x],[y],[x'y],[y'x]
Oko B {[yj,[x,y],[y,x]}
Ok() A {[x,yl,[y,x]}
Deq0 C {[x],[y],[x,y],[y,x]}
Ok(x) C {[y]}

Figure 3-1: Linearized Values

4. Reasoning About Concurrent Objects
So far, linearizability is defined in terms of histories. This historic (1) characterization is useful for

motivating the property, and for demonstrating properties such as locality, but it is awkward for

verification. For linearizable histories, however, assertions about interleaved histories can be

transformed into assertions about sets of sequential histories, and thus, sets of values. The

transformed assertions can be stated and proved with the help of familiar axiomatic methods

developed for sequential programs. Sometimes it will be necessary or more convenient to reason in

terms of sets of sequential histories, (see Poss below), and sometimes, simply in terms of sets of

values, e.g., Lin(H) for some history H. In this section, we show how we reason about properties of

concurrent objects by reasoning in terms of sets of linearizations; in the next section, we how how we

do verification by reasoning in terms of sets of values.

A possibility for a history H is a pair <S, P> where S is a linearization of H and P is the set of pending

invocations not completed to construct S. We let Poss denote the set of possibilities of a history. If we

only care about the final value of S, we use <v, P> to denote one of the <S, P> such that the value of S

is v. The relationship between the set of possibilities and set of linearized values for a given history H

is that for each <v, P> E Poss, v E Lin(H).

H's set of possibilities, and hence set of linearized values, is captured by the following three axioms.

The following closure axiom states that if S is a linearization of H, 'inv A' is a pending invocation in H

that is not completed to form S, and S' = S inv A * res A is a legal sequential history, then S' is also a

linearization of H.

Axiom C:
<S, P> E Poss

= [(V 'inv A' E P) (3 res) S - inv A - res A is legal
=* <S - inv A * res A, P - {inv A)> E Poss]

The following invocation axiom states that any linearization of H is also a linearization of H - inv A.
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Axiom I:
{<S, P> E Possi

inv A
{(<S, P U {inv A)> E Poss'}

Let last(S, A) be the response to A's last invocation in the sequential history S, and let A E P mean
there exists an invocation i such that 'I A' E P. The following response axiom states that any
linearization of H in which the pending 'inv A' is completed with 'res A' is also a linearization of H * res

A.
Axiom R:

{<S, P> E Poss and A f P and res A = last(S, A))
res A

{<S, P> E Poss')

For a given history with m events, we use Poss to denote the set of possibilities for the ith prefix of H,
for 0 < i < m. A derivation that shows that <v, P> E Possm is a sequence of implications of the form:

v0, PO> E Posso

Oil<vj P > E Po w k

= <vn, Pn> E Poss m.

where vn = v, Pn = P, and each implication is justified by Axiom C, 1, or R.

Intuitively, a derivation is like a history. Instead of reasoning about histories directly, however, we use

axiomatic proof techniques to reason about derivations-each implication in a derivation is like a step

in a proof where each step in the proof is justified by some axiom. For each operation of a typed

object, Axiom C is instantiated to yield type-specific closure axioms, and similarly for Axioms I and R.

In any derivation showing H is linearizable, the order in which Axiom C is applied to pending
invocations induces a valid linearization ordering on the operations of H. Informally, the following

lemma states that an operation must appear to "take effect" at some instant between its invocation
and its response.

Lemma 2: Let 'inv A' be the ith event of H, and let the matching response 'res A' be the jth
event. Any derivation showing that H is linearizable must include an application of Axiom
C to infer:

(v, P> E Possk <v', P - (inv A)> E Possk

for some k, i < k < j.
Proof: The only way to infer anything about Poss i from Possi.1 is to apply Axiom I as
follows:

<u, Q> E Poss,.1 => <u, 0 U {inv Al> E Poss,
Later in the derivation, the only way to infer anything about Possi from Poss. 1 is by
applying Axiom R:
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<w, R> E Possi.1 and 'inv A' 4 R <w, R> E Poss .

Between these two steps, the only way to remove 'inv A' from the set of pending
invocations is by applying Axiom C as shown above. I

We use Lemma 2 and type-specific instantiations of Axioms C, I, and R to prove properties about

concurrent objects. First, we look at concurrent registers, then concurrent queues.

4.1. Concurrent Registers

Here are axioms for Read and Write operations for all concurrent register objects, r:
{true)

ReadO/Ok(v)
{fetch(r) = fetch(r') = v}

(true)
Write(v)/Oko
{fetch(r') = v)

where the Larch Shared Language specification for register values is:

RVals: trait
introduces

new: - R
store: R, V --+ R
fetch: R - V
dontcare: - V

constrains R so that for all r: R, v: V
fetch(new) = dontcare
fetch(store(r, v)) = v

These sequential axioms can be combined with our linearizability condition to prove assertions about

the interleavings permitted by concurrent registers. Notice that we do not need to assume that all

values written to the register are unique.

Every value read was written, but not overwritten.

Theorem 3: If the last event of H is the Read response 'Ok(v) A', then H includes an earlier
Write invocation 'Write(v) B', and if the Write operation is complete, then it precedes no
other complete Write operation.
Proof: If the Read response is the mth event of H, then <v, P> E Poss m. In any derivation
showing that H is linearizable, the last application of Axiom C for a Write invocation must
have the form:

<u, 0> E Possk = <v, 0- {Write(v) B)> E Poss k

This inference is legal only if B's Write is pending at event k. By Lemma 2, if B's Write is
complete and precedes another complete Write, then the derivation must include a later
application of Axiom C for a Write invocation, contradicting our assumption that B's was
the last. I
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Register values are persistent in the absence of Write operations.

Theorem 4: An interval in a history is a sequence of contiguous events. If / is an interval
that does not overlap any Write operations, then all Read operations that lie within I return
the same value.
Proof: Pick two Read operations that lie within the interval that return distinct values v and
v'. If H is linearizable, there exists a derivation showing that <v, P> E Possi and <v', Q> E
Possk where one Read is pending at event j and the other at event k, where i k. The only
way to deduce that <v', Q> E POSSk from (v, P> E Possi is to apply Axiom C to a pending
Write at some intermediate step, which is permissible only if some Write operation overlaps
I. 1

4.2. Concurrent Queues

The proofs of the following theorems about concurrent queues use Axioms E and D of Figure 2-1 and

the trait of Figure 2-2. We make use of the following fact about queues:

Lemma 5: If 0 is a sequential queue history where x is enqueued before y, then x is not
dequeued after y.
Proof: From Axioms E and D. I

Theorem 6: If Enq(x)/Ok), Enq(y)/OkO, DeqO/Ok(x), and DeqO/Ok(y) are complete
operations of H such that x's Enq precedes y's Enq, then y's Deq does not precede x's
Deq. (I.e., either x's Deq precedes y's, or they are concurrent.) ,
Proof: Pick a derivation showing H is linearizable. Lemma 2 implies that Axiom C is
applied to all four invocations, since the operations are complete. Moreover, because the
enqueue of x precedes the enqueue of y, the derivation must apply Axiom C to x's Enq
first. By Lemma 5, the derivation must also apply Axiom C to x's Deq before y's Deq, thus
y's Deq operation cannot precede x's Deq. I

Gottlieb et al. (71 adopt the property proved in Theorem 6 as the desired correctness property for their

concurrent queue implementation. The difficulty of reasoning directly about interleaved histories is

illustrated by observing that Theorem 6 by itself is incomplete as a concurrent queue specification,

since it does not prohibit implementations in which enqueued items spontaneously disappear from

the queue, or new items spontaneously appear. Such behavior is easily ruled out by the following two

theorems:

Items do not spontaneously vanish from the queue.

Theorem 7: If the Enq of x precedes the Enq of y, and if y has been dequeued, then either
x has been dequeued or there is a pending Deq concurrent with the Deq of y.
Proof: Any derivation showing that H is linearizable must use Axiom C to enqueue x
before enqueuing y, hence by Lemma 5 the derivation must apply Axiom C to dequeue x
before it can dequeue y. The Deq invocation that removed x may have returned, or it may
be pending. U
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Items do not spontaneously appear in the queue.

Theorem 8: If x has been dequeued, then it was enqueued, and the Deq operation does
not precede the Enq.

Proof: Any derivation showing that (q, P) E Possk and x = first(q) must include an earlier
application of Axiom C showing that:

<q', P'> E Possi ==> <ins(q',x), P' - {Enq(x) A)> E Pass,

which is legal only if the invocation has occurred. I

4.2.1. Two Lemmas about Concurrent Queues

Before we turn to verification of implementations, we state and prove two lemmas about queues that

will be used to help verify the queue implementation of the next section.

In a derivation, an Enq inference for x is an instantiation of Axiom C of the form:

<qi, P.> E Possk == <ins(q,,x), P i- {Enq(x) Al> E Passk

A Deq inference is defined analogously.

Two inferences commute in a derivation if their order can be reversed without invalidating the

derivation. A derivation showing that <q, P> E Possm is in canonical form if each Enq inference for an

item in q occurs "as late as possible," i.e., it does not commute with the next inference in the

derivation.

Lemma 9 implies that if x is in q, the event following the Enq inference for x is either the return event

for x, or the return event for an item that follows x in q.

Lemma 9: If 8 is a canonical derivation showing that <q, P> E Possm, and x is an item in q,
then the inference following the Enq inference for x is either the Enq inference for the item
following x in q, or an application of Axiom R for the matching response toEnq(x).
Proof: We show that x's Enq inference commutes with all other inferences. If the next
inference in 8 is the Deq inference for an item y, then 8 cannot be canonical, because:

<q,,P.> E Passk
= <is(q.,x), P - {Enq(x) A)> E Poss,.

<rest(ns(qj'x)), Pi - {Enq(x) A, DeqO B)> E Pes k

is equivalent to:

<q., P> E Poss.
=* (<rest(q)),P - {DeqO B)> E Posk
= <ins(rest(qi ,x), P, - {Enq(x) A, DeqO B}> E Possk

Here, we exploit the observation that because x is in q, qi must be non-empty, hence
rest(ins(qi,x)) = ins(rest(qi),x).

Similar arguments show that x's Enq inference commutes with all applications of Axiom I,
and with all applications of Axiom R for non-matching response events. Finally, we
observe that any Enq inference for an item in q must follow all Enq inferences for items
whose Deq inferences appear in 8. U
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Lemma 10 states that we can consider equivalence classes of queues rather than individual queues.

Lemma 10: If <q, P> E Possm, and q° is a queue value constructed by rearranging the
items of q in an order consistent with the partial precedence order of their Enq operations,
then <q 0, P> E Poss m .

Proof: We argue inductively that if there exists a canonical n-step derivation that <q, P> E
Poss. , there also exists a canonical n-step derivation that <q", P> E Pessm,

Base step: Trivial for n = 0 where q = emp.

Induction hypothesis: If <q, P> E Possm has a canonical derivation of length less than n,
<q 0, P> E Possm has a canonical derivation of the same length.

Induction step: Given an n-step canonical derivation 8 that <q, P> E Possm , we construct
an n-step canonical derivation 3° that <q*, P> E POss m . If the last step of 8 is an
application of Axiom I or R, then qn.1 = qn, and we have an n-1 step canonical derivation
that <qn, Pn-1 > E POsSm. 1. The induction hypothesis yields an n-1 step canonical derivation
that <q*, Pn-l> E POSSm. 1, and reapplying the last inference yields a derivation that (q*, P)
E Poss .

Otherwise, the last step of 8 is an Enq or Deq inference, which can be discarded to yield an
n-1 step canonical derivation that <qn- 1, Pn.1 > E Possm" Suppose the discarded inference
is an Enq inference for x by A. Define qn.1 s to be q" with x deleted from the queue. By the
induction hypothesis, there exists an n-1 step canonical derivation 81., that <qn-1 *1 Pn-l1 >
E Possm. If x is the last element in q*, then we construct V using Axiom C to enqueue x to
qn1* . Otherwise, let y be the item immediately following x in q*, let B be the process that
enqueued y, and let the ith inference of S.., * be the Enq inference for y. By Lemma 9, the
next event in the history is the return event for some item z that follows x in q*. Since z's
Enq operation is concurrent with x's Enq operation, 'Enq(x) A' E P *. We construct 8 as
follows: all inferences before j are unchanged, and the jth inference of 8" is x's Enq
inference:

<q, 0, P ">E PossI
6 ins(q.,x), P - {Enq(x) A)>E PosskJ I

which is justified because 'Enq(x) A' is in P.°. Forj < k < n, the kth inference of 8 is the
(k-1)st inference of 8, with ins(q.°,x) substituted for a-* and P,° for Pk. To show that 80 is
sound, we must check that each axiom's pre-conJition is still satisfied. The result is
immediate for applications of Axioms I and R, as well as for Enq inferences, since it is
always legal to append an Enq to a history. For Deq inferences, we observe that every
dequeued item was enqueued before x, hence at each Deq inference, the value at the front
of the queue is unchanged. Finally, V° is canonical because the Enq inferences for x and
y do not commute.

Suppose the discarded inference was a Deq inference, where first(qn-1) = x. Define qn-1
to be the queue value such that f irst(qn. 1 ) = x and rest(qml ° ) = q°. By the induction
hypothesis, there exists a canonical n-1 step derivation Sn. i " that <qn-t ' Pn-1 > E POsSm .

Since 'DeqO A' E Pn-1I we can use Axiom C to extend S n.1 to a canonical derivation 8°

such that <rest(qn. 1*), Pn. 1 - {Deqo A)> = <q , Pn> E Possm. 3
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5. Verification: Abstraction Functions Revisited
This section proposes a verification methodology for implementations of linearizable concurrent

objects. We propose a model for data type implementations and define a correctness condition in

Section 5.1. We give an example of a queue implementation and prove its correctness in Section 5.2.

As a first step, let us review how to verify a sequential data type implementation [14, 9]. An

implementation consists of an abstract type A, the type being implemented, and a representation (or

rep) type R, the type used to implement A. The subset of R values that are legal representations is

characterized by a predicate called the rep invariant, 3: R --+ bool. The meaning of a legal rep is given

by an abstraction function, .: R - A, defined only for values that satisfy the invariant.

An abstract operation a is implemented by a sequence, p, of rep operations that carries the rep from

one legal value to another, perhaps passing through intermediate values where the abstraction

function is undefined. The rep invariant is thus part of both the pre-condition and post-condition for

each operation's implementation; it must be satisfied between abstract operations, although it may be

temporarily violated while an operation is in progress. An implementation, p, of an abstract operation,

a, is correct if there exists a rep invariant, 3, and abstraction function, ., such that whenever p

carries one legal rep value r to another r', a carries the abstract value from A(r) to ,A(r').

For sequential objects, the rep invariant must hold at the start and finish of each abstract operation,

but it may be violated while an operation is in progress. For concurrent objects, however, it no longer

makes sense to view the object's representation as assuming meaningful values only between

abstract operations. Instead, operations must be implemented to behave correctly for rep values that

reflect the incomplete effects of concurrent operations. To capture the effects of interleaving, the

notions of rep invariant and abstraction function must be extended to encompass transient

representation values reflecting the incomplete effects of concurrent operations.

5.1. Definitions

An implementation is a set of histories in which events of two objects, a representation object r of type

R and an abstract object a of type A, are interleaved in a constrained way: for each history H in the

implementation, (1) the subhistories Hir and Hla satisfy the usual well-formedness conditions; and (2)

for each process P, each rep operation in HIP lies within an abstract operation. Informally, an

abstract operation is implemented by the sequence of rep operations that occur within it.

An implementation is correct if for every history H in the implementation, Hja is linearizable.

The rep invariant 5 must be continually satisfied and the abstraction function continually defined not
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only between abstract operations, but also between each step in the sequence of rep operations

implementing an abstract operation. The non-determinism inherent in a concurrent computation

gives our abstraction functions a different flavor from their sequential counterparts. We redefine the

abstraction function so that it maps each rep value to a (non-empty) set of abstract values:
A : R --+ 2A

To show correctness, the verification technique for sequential implementations is generalized as

follows. Assume that the implementation of r is correct, hence Hir is linearizable for all H in the

implementation. Let Lin(HIx) be the set of linearized values for x in H. Our verification technique

focuses on showing the following property:

For all r in Lin(Hjr), 3(r) holds and .A(r) C Lin(Hja)

This condition implies that Lin(Hla) is non-empty, hence that Hla is linearizable. No i thal the set

inclusion is necessary in one direction only; there may be linearized abstract values that have no

corresponding representation values. Such a situation arises when the representation "chooses" to

linearize concurrent operations in one of several permissible ways.

5.2. Queue Example

Consider the following concurrent queue implementation. The representation is a record with two

components: items is an array having a low bound of 1 and a (conceptually) infinite high bound, and

back is the (integer) index of the next unused position in items.
rep = record (back: int, items: array [item]}

Each element of items is initialized to a special null value, and back is initialized to 1.

Enq and Deq are implemented as follows:

Enq z proc (q: cvt, x: item)
i: int := INC(q.back) % Allocate a new slot.
STORE(q.items[i], x) % Fill it.
end enq

Deq proc (q: cvt) returns (item)
while true do

range: int := FETCH(q.back)-!
for i: int in 1. .range do

x: item := SWAP(q.items[i],null)
If x -= null then return(x) end
end

end
end deq

An Enq execution occurs in two atomic steps: an array slot is reserved by atomically incrementing
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back, and the new item is stored in items. 2 Deq traverses the array in ascending order, starting at

index 1. For each element, it atomically swaps null with the current contents. If the value returned is

not equal to null, Deq returns that value, otherwise it tries the next slot. If the index reaches back-I

without encountering a non-null element, the operation is restarted. All atomic steps can be

interleaved with steps of other operations. For brevity, we leave out the axioms and traits for records

and arrays, which can be straightforwardly given (see (20, 101).

Let R be a complete history for a queue representation, and let items(R) be the set of items stored in

the array, but not swapped out. Let -<R be the partial order such that x -< R y if the STORE operation

for x precedes the INC operation for y in R. If r is a linearized value for R, items(r) = items(R)

corresponds to the set of non-null items in the array, and -<r = "<R is their partial order. Finally, we

ex..nd the trait of Figure 2-2 by defining the total order, <q, and the operator, items, such that:
first(q) < qfirst(rest(q))

items(emp) = (0
items(ins(q, e)) = {e} U items(q)

The implementation has the following rep invariant:
5(r) = (r.back > 1)

A (i > r.back ==, r.items[ij = null)
A (lbound(r.items) = 1)

and the following abstraction function:
A(r) = {q I items(r) = items(q) A "<r C <q)

In other words, a queue representation value corresponds to the set of queues whose items are the

items in the array, sorted in some order consistent with the precedence order of their Enq operations.

Thus, our implementation allows for an item with a higher index to be removed from the array before

an item with a lower index, but only if the items were enqueued concurrently.

Figure 5-1 shows a sequence of abstract operations of Figure 3-1 along with their implementing

sequence of rep operations. Column two is the set of abstracted linearized rep values. Column three
is the set of linearized abstract values. Our correctness criterion requires showing that each set in

column two is a subset of the corresponding set in column three.

Figure 5-2 shows the Enq and Deq implementation annotated with assertions that are true before and

after each abstract invocation and response and each rep operation. It is convenient to keep as

implicit auxiliary data the partial order, -<R' on items in the array, and the set, P, that contains the

invocations that have not yet been applied to the rep.

2 INC returns the value of its argument from before the invocation, not the new incremented value.
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History UrE~in(AIlr).A(r) Lin(Hla)

Enq(x) A (0l Ufl,[41
INC(q.back) A [D U1.14x)
Ok(l) A {11) (0J,[41
STORE(q.items(1 ],x) A (fl,(xDl (flx]

Enq(y) B {(],(Xj {fl,[x],[y1,[x'yJ,[y'xfl
INC(q.back) 8 {11,M) ~ {0l,[x]4y1,fx~y]4[y'x]
Ok(2) B {fl,[x]} {[],jxj'[y],Ix'y],[y'x]
STORE (q, items[2],y) B {[],[x],[y],[x~yl {U1tx]11'x'y1,[y'xD
Ok() B {[y],[x,y]) {[],jxI,[y] x'yJ,[y-xDl

Ok() B {[y],[x,yll {[y][x'y],ly'x11
Ok() A {[x'yll ((ylx'yI'fy'x1l

Ok() A {[x,yj} {[x,y],[y,xl}
Deq() C {[x'yDl ([x,y],fy,x],[x],[y])
FETCH(q.back) C {[x'y]) {Ix'y],jy'x],fx],[y])
Qk(2) C f[x'y]) {[x,y],[y,x],[x],[y])
SWAP(q.items[1 ],null) C {[x,y],[y]) {Ix,yit[y,x],[x],(yll
Ok(x) C f[y]) {[x'yIEy.xI,[x],(yDl

Ok(x) C fry]) lyll

Fligure 5-1: A Queue History

Ifll is a set of items partially ordered by -.<, define:

(1, -)={q I = items(q) and -< CZ <q)

and
<(I, -<,P> ={<q, P> I q E (1, -)

The partially ordered set of queue items, (1, -<), captures the non-quiescent abstract state of the

queue, i.e., the possible values of the queue while there are concurrent Enq and Deq operations or
pending invocations. Notice that we can rewrite the abstraction function as A.(r) = (items(r), -<d)- 0(,
-<), P> identifies each of the possible sets of queue values with a set of pending invocations, thereby

forming a set of (queue) possibilities.

Lemma 11: If x is a maximal element with respect to --<, x C 1, 'Enq(x) A' ( P, and <(I, -<),
P U {Enq(x) A)> C Puss, then <(I U {x), -<), P> C Poss.
Proof: Pick any q E (1, --<), and any q' E (I U {x), --Q. Since <q, P U [Enq(x) Al> E Poss,
(ins(q,x), P> E Poss by Axiom C. Since ins(q,x) is an element of (I U {xl, --<), (q', P> E
Poss by Lemma 10.1

Lemma 12: If <(I, -<), P U {Deq() A}> C Poss, then for all x such that x is a minimal
element of 1, <(I - {xl, --<), P> C Poss.
Proof: Pick any q E (l-)such that first(q) = x, and any q' E (I - (x}, --<). Since <q, P U
{Deq() A)> E Poss, <rest(q), P> E Poss by Axiom C. Since rest(q) is an element of (I - {x},

<)q', P> E Pass by Lemma 10.
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(true)
Enq proc (q: cvt, x: item)

P PU (Enq (x) A))

(true)
1: irit := INC(q.back)
(q.back' =q.back + 1 A i= q.back)

('Enq() A' E P)
STORE(q.itemsi]. x)
(P' =P - (Enq(x) A) A index(q.itens', x) =i A

x E max~temns(q) A q.back < q.back')
% A concurrent Enq might bump q.back before the store.

(true)
end Enq
('Enq W)A' jP)

(true)
Oeq =proc (q: cvt) returns (item)
(P': P U (DeqO A))

while true do

(true)
range: int :- FETCH(q.back)-1
(range z q.back-1)

for 1: int in 1. range do

(true)
x: item := SWAP(q.items[1],null)

P'= P - (Deq() A) A (x =null V x E min~itemns(q'))))

If x -- null then return(x) end
end

end
and Deq

Figure 5-2: Annotated Queue Implementation
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Lemma 11 will allow us to show that the set of linearized queue values does not change over a STORE

operation and similarly, Lemma 12, for a SWAP operation, by using -<r for -< and by recalling that for

each <v, P> E Poss, v is a linearized value. We use the next two lemmas to satisfy the conditions of

the previous two lemmas.

Lemma 13: Enq enqueues an item x that is maximal with respect to "<
Proof: Suppose not. Then after the STORE there exists some non-null item y such that x

"<r y. By definition of "<r' we have that the STORE for x precedes the INC for y. Thus,
index(q.items, x) < index(q.items, y). Since index(q.items, x) = q.back, then q.back <
index(q.items, y). By the rep invariant, for all i, i > q.back, q.items(il = null so that
q.items(index(q.items, y)] = null, i.e., y = null, a contradiction. I

Lemma 14: Deq removes and returns an item x that is minimal with respect to "<r.
Proof: Suppose not. Then there exists non-null y such that y -<r x. For x to be returned
from within the for loop, the SWAP of x must happen before the STORE of y. The STORE
of x must happen before the SWAP of x and the INC of x before the STORE of x, so then
the INC of x must occur before the STORE of y, which implies that x and y are
incomparable, a contradiction. i

Here is a proof of correctness.

Theorem 15: The queue implementation is correct.
Proof: Assuming every rep history is linearizable, we need to show that every queue
history, H~q, is linearizable. It suffices to show that the "subset" property,
UrELin(Hfr) .(r) C Lin(HIq), remains invariant over abstract invocation and responses and
over complete rep operations. Thus, it can be conjoined to the pre- and post.conditions of
Figure 5-2 as justified by the Owicki-Gries proof method [231. Axioms I and R give us the
result for abstract invocation and response events. INC and FETCH leave the abstraction
function the same. Thus, we are left with two cases, STORE and SWAP. By Lemma 13 we
know that STORE adds a maximal item and thus, we can apply Lemma 11 to show that the
subset property is preserved. Similarly, by Lemma 14 we know that SWAP removes a
minimal item and thus, we can apply Lemma 12 to show that the subset property is
preserved.

Proofs of non-interference between pre- and post-conditions and that the rep invariant
holds are straightforward. I

An Aside: Handling Critical Regions
An implementation without critical regions, such as the previous queue example, can be verified by

defining a rep invariant that is continually satisfied, and an abstraction function that is continually

defined. That is, each step of the sequence of representation operations implementing an abstract

operation must preserve the rep invariant, and exactly one such step causes the operation's effects to

become visible to other operations.

If an operation creates a temporary inconsistency, perhaps hidden from concurrent operations by
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some form of critical region, then it may not be possible to define a meaningful abstraction function

directly in terms of the representation. Such inconsistencies can be eliminated by augmenting the

representation with appropriate auxiliary data, and similar proof techniques as used in our queue

example can be used for verification.

6. Related Work
The axiomatic approach to specifying sequential programs has its origins in Hoare's early work on

verification [13] and later work on proofs of correctness of implementations of abstract data types

[14], where first-order predicate logic pre- and post-conditions are used for the specification of each

operation of the type. The algebraic approach, which defines data types to be heterogeneous

algebras [31, uses axioms to specify properties of programs and abstract data types, but the axioms

are restricted to equations. Much work has been done on algebraic specifications for abstract data

types (1, 6, 8, 29, 4, 5, 28, 16]; we use more recent work on Larch specifications [10, 11] for sequential

program modules.

Owicki and Gries extended Hoare's axiomatic approach to handle concurrent programs [24] by

including axioms for general concurrent programming language constructs. Apt et al. [2] use a

similar approach for CSP (15] in particular. These approaches differ from ours by focusing on control

structures such as the parallel operator, leaving data uninterpreted.

Lamport [18] has proposed a model and assertion language for specifying properties of concurrent

objects. His approach is more general than ours, as it addresses liveness as well as safety properties,

and non-linearizable as well as linearizable behavior. Our approach, however, focuses exclusively on

a subset of concurrent computations that we believe to be the most interesting and useful.

Our notion of linearizability generalizes and unifies similar notions found in specific examples in the

literature. Lamport gives a specification for a linearizable concurrent queue permitting one

enqueuing process and one dequeuing process. The queue's state is defined as a collection of state

functions mapping time to algebraic values. One state function takes on queue values; it may change

only while operations are in progress. The values of the ot,.er "'*te f,,nctions are used as control

flags to prevent operations from taking effect more than once. His queue-valued state function

roughly corresponds to our abstraction function except that the state function maps to a single queue

value, not a set of queue values. His technique, therefore, could not be used to prove our queue

implementation correct because of the inherent nondeterminism in our example.

Misra (22] has proposed an axiomatic treatment of concurrent hardware registers in which the

register's value is expressed as a function of time. Restricted to registers, our axiomatic treatment is
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equivalent to his in the sense that both characterize the full set of linearizable register histories.

Theorems 3 and 4 capture two properties of Misra's registers. Misra's explicit use of time In axioms is

appropriate for hardware, where reasoning in terms of the register's hypothetical value is useful as a

guide to hardware designers. Our approach, however, is also appropriate for objects implemented in

software, as we have found that reasoning directly in terms of partial orders generalizes more

effectively to data types having a richer set of operations.

Gottlieb et al. [7] have investigated architectural support for implementing concurrent objects without

critical regions, an approach illustrated by our linearizable implementation of a FIFO queue. They

present a linearizable implementation of a concurrent queue (different from ours). The correctness

condition asserted for their queue, however, is the property stated in Theorem 6, which by itself is

incomplete as a concurrent queue specification since it does not prohibit implementations in which

enqueued items spontaneously disappear from the queue, or new items spontaneously appear. As

shown by Theorems 7 and 8, such anomalous behavior is easily ruled out by our queue axioms and

the assumption of linearizability.

7. Discussion
Without linearizability, the meaning of an operation may depend on how it is interleaved with

concurrent operations. Specifying such behavior would require a more complex specification

language, as well as producing more complex specifications (e.g., Lamport's [18]). Linearizability

provides the illusion that each operation takes effect instantaneously at some point between its

invocation and its response, implying that the meaning of a concurrent object's operations can still be

given by pre- and post-conditions.

The role of linearizability for concurrent objects is analogous to the role of serializability for data base

theory: it facilitates certain kinds of formal (and informal) reasoning by transforming assertions about

complex concurrent behavior into assertions about simpler sequential behavior. Like serializability,

linearizability is a safety property; it states that certain interleavings cannot occur, but makes no

guarantees about what must occur. Other techniques, such as temporal logic [27, 25, 12, 18, 21],

must be used to reason about liveness properties like fairness or priority.

An implementation of a concurrent object need not realize all interleavings permitted by linearizability,

but all interleavings it does realize must be linearizable. The actual set of interleavings permitted by a

particular implementation may be quite difficult to specify at the abstract level, being the result of

engineering trade-offs at lower levels. As long as the object's client relies only on linearizability to

reason about safety properties, the object's implementor is free to support any level of concurrency

that appears to be cost-effective.
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Linearizability provides benefits for specifying, implementing, and verifying concurrent objects in

multiprocessor systems. Rather than introducing complex new formalisms to reason directly about

concurrent computations, we feel it is more effective to transform problems in the concurrent domain

into simpler problems in the sequential domain.
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